

Determination of Optimal Reserve with Consideration of Variable Generation and Controllable Loads

Robert Entriken (EPRI)

Taiyou Yong (Eversource Consulting)

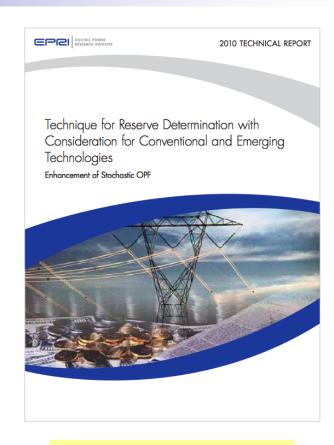
FERC Technical Conference Washington, DC June 29, 2011

Outline

- Introduction
- Stochastic OPF
- Project Contributions
 - Modeling Enhancements
 - -Three Applications
- Project Report

Introduction

Industry Issues

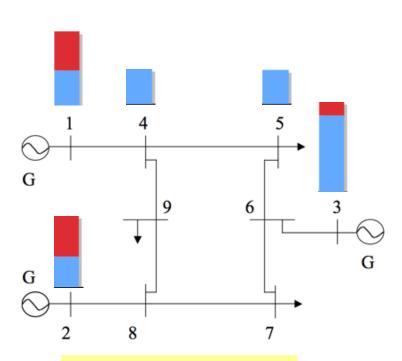

- Reliable dispatch for high levels from variable generation (VG)
- Determining daily/hourly reserve
- Assessing operational risks
- Evaluating reliability under stressful conditions

P173.004 2010 Project Goals

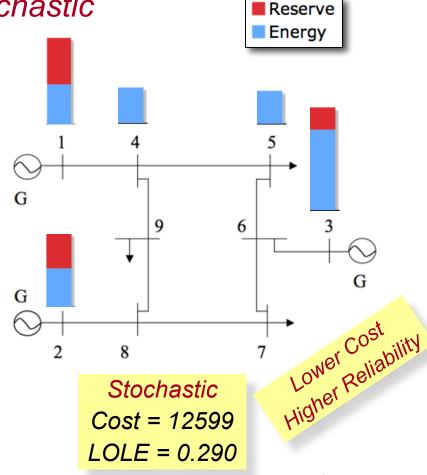
- Examine various risk measures
- Multiple sources of uncertainty
- Ramping needs and constraints
- Application focus

Deliverable

Technical Report



Many Enhancements and Applications



Stochastic OPF

• <u>High wind penetration</u> makes a difference between *deterministic* and *stochastic*

Deterministic $Cost = \frac{11026}{13793}$ $LOLE = \frac{0.134}{0.495}$

Stochastic OPF

- More energy and reserve
- More diversification

	Energy	Reserve
G1	54.0	56.0
G2	45.0	60.0
G3	110.0	19.0
G4	50.0	0.0
G5	46.0	0.0
Total	305.0	135.0

Wind Variation at G5 20 MW to 60 MW

Energy	Reserve
60.0	70.4
55.0	50.0
110.0	30.0
50.0	0.0
46.0	0.0
321.0	150.4

Stochastic can see variations and risks

Deterministic

 $Cost = \frac{11026}{13793}$

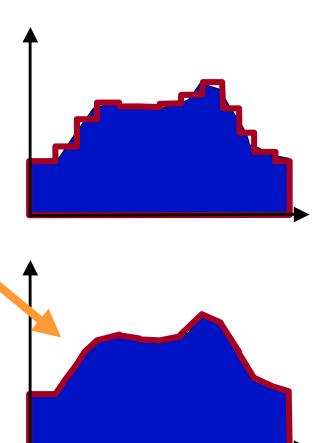
 $LOLE = \frac{0.134}{0.495}$

Stochastic

Cost = 12599

LOLE = 0.290

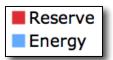
Project Contributions *Model Enhancements*

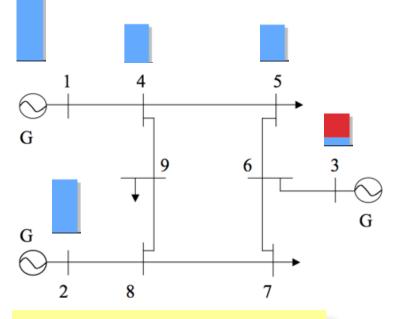

- Ramping Scarcity and Allocation
 - Ensure smooth, short-term operations
- ✓ Multiple Sources of Uncertainty
 - Better realism
- Reporting of Benefits and Risk Measures
 - Understand and quantify risks
 - Establish performance benchmarks

Example Enhancement for Ramping

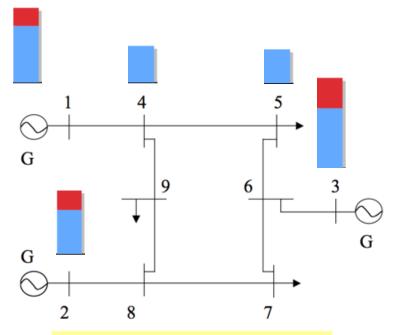
✓ Ramping Scarcity and Allocation

- Share ramp capability between energy ramping and reserve ramping
- Sub-interval ramping means schedules will ramp
- Implemented the multiple-stage optimal power flow problem with ramp-rate sharing and sub-interval deviation.





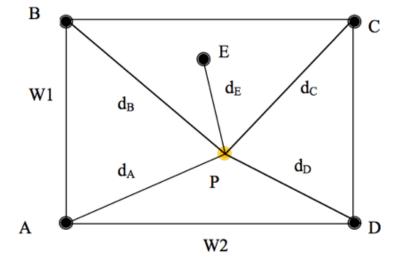
Example Enhancement for Ramping


- IEEE 9-Bus Network
- Uncertain Wind at Bus 5

Contingencies at G1, G2, and G3

Without Ramping Allocation
Cost = 10448

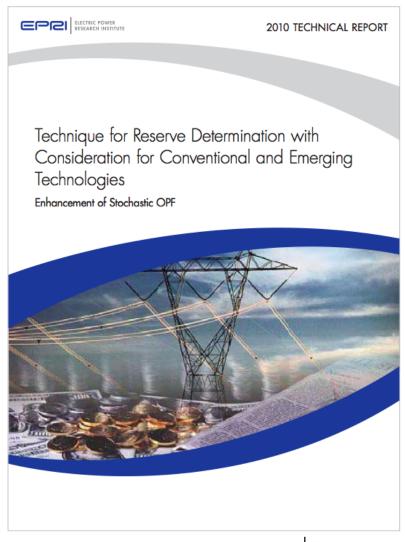
With Ramping Allocation
Cost = 10536


Project Contributions *Three Applications*

- ✓ Reserve Determination Supports Operations Planning
 - Decide energy and reserve schedules
 - Estimate the expected costs for redispatch
- ✓ Reserve Validation Supports Operations Planning
 - Given energy and reserve schedules
 - Estimate the expected costs for redispatch
 - Estimate risk levels
- ✓ Rapid Redispatch Supports System Operations
 - Given a sampling of redispatch scenarios
 - An actual event takes place
 - Rapidly compute a optimal or near-optimal re-dispatch

Example Rapid Redispatch

- Precomputed Redispatch Solutions
 - -A, B, C, D, E
- Compute New Redispatch
 - -P
 - Combination of closest points: A, E, D
- Simple Formulation Allows for Added Features
 - Limit Number and Location of Control Operations



Project Report

Product 1020501 Technique for Reserve Determination with Consideration for Conventional and Emerging Technologies

- Describes all enhancements
- Examples for all applications
- Appendices contain all GAMS code
- Available now!

Questions & Discussion

Together...Shaping the Future of Electricity

Appendix

Enhancement for Risk Measures

✓ Reporting Benefits and Risk Measures

Review of NERC Reliability
 Metrics Working Group proposals.

- New estimates for measuring benefits and risk
 - Loss of Load Expectation
 - Expected Unserved Energy
 - System Reserve Margin
 - Duration and Frequency of Outages

